Computing Slow Manifolds of Saddle Type
نویسندگان
چکیده
Slow manifolds are important geometric structures in the state spaces of dynamical systems with multiple time scales. This paper introduces an algorithm for computing trajectories on slow manifolds that are normally hyperbolic with both stable and unstable fast manifolds. We present two examples of bifurcation problems where these manifolds play a key role and a third example in which saddle-type slow manifolds are part of a traveling wave profile of a partial differential equation. Initial value solvers are incapable of computing trajectories on saddle-type slow manifolds, so the slow manifold of saddle type (SMST) algorithm presented here is formulated as a boundary value method. We take an empirical approach here to assessing the accuracy and effectiveness of the algorithm.
منابع مشابه
Computation of Saddle-Type Slow Manifolds Using Iterative Methods
This paper presents an alternative approach for the computation of trajectory segments on slow manifolds of saddle type. This approach is based on iterative methods rather than collocation-type methods. Compared to collocation methods, which require mesh refinements to ensure uniform convergence with respect to , appropriate estimates are directly attainable using the method of this paper. The ...
متن کاملLocal Analysis near a Folded Saddle-Node Singularity
Folded saddle-nodes occur generically in one parameter families of singularly perturbed systems with two slow variables. We show that these folded singularities are the organizing centers for two main delay phenomena in singular perturbation problems: canards and delayed Hopf bifurcations. We combine techniques from geometric singular perturbation theory – the blow-up technique – and from delay...
متن کاملComputer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields
In this paper we introduce a computational method for proving the existence of generic saddle-to-saddle connections between equilibria of first order vector fields. The first step consists of rigorously computing high order parametrizations of the local stable and unstable manifolds. If the local manifolds intersect, the NewtonKantorovich theorem is applied to validate the existence of a so-cal...
متن کاملComputing One-Dimensional Global Manifolds of Poincaré Maps by Continuation
We present an algorithm to compute one-dimensional stable and unstable manifolds of saddle periodic orbits in a Poincaré section. The computation is set up as a boundary value problem by restricting the beginning and end points of orbit segments to the section. Starting from the periodic orbit itself, we use collocation routines from AUTO to continue the solutions of the boundary value problem ...
متن کاملHomoclinic saddle-node bifurcations in singularly perturbed systems
In this paper we study the creation of homoclinic orbits by saddle-node bifurca-tions. Inspired on similar phenomena appearing in the analysis of so-calledìocalized structures' in modulation or amplitude equations, we consider a family of nearly in-tegrable, singularly perturbed three dimensional vector elds with two bifurcation parameters a and b. The O(") perturbation destroys a manifold cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 8 شماره
صفحات -
تاریخ انتشار 2009